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Performance optimization via sequential processing
for nonlinear state estimation of noisy systems

Stefano Battilotti

Abstract—We propose a framework for designing observers
for noisy nonlinear systems with global convergence properties
and performing robustness and noise sensitivity. This framework
comes out from the combination of a state norm estimator with
a chain of filters, adaptively tuned by the state norm estimator.
The state estimate is sequentially processed through the chain of
filters. Each filter contributes to improve by a certain amount
the estimation error performances of the previous filter in terms
of noise sensitivity and this amount is quantitatively evaluated
using a comparison criterion which considers the ratio of the
asymptotic error norm bounds of two consecutive filters in
the chain. A recursive algorithm is given for implementing the
chain of filters and guaranteeing a sequential error performance
optimization process. Simulations show the effectiveness of these
chains of filters.

Index Terms—Noisy systems, nonlinear dynamics, observers.

I. INTRODUCTION

DESIGNING state observers with (semi)global conver-
gence properties, enhanced speed performances, robust-

ness and low sensitivity to (measurement) noise is a chal-
lenging task. Intrinsic limitations to accomplishing this task
have been pointed out for linear systems in [23]. From the
past years we have a vast literature on observer design for
nonlinear systems (we will not reference this here) focusing
on single such performances, almost exclusively convergence
domain or speed performances. In many of these contributions,
robustness to model uncertainties and sensitivity to noise
are not considered at all or considered only a posteriori,
evaluating the possible effects on the error performances.
An important conclusion of these works is that for high-
gain observers (HGO) it is not possible to achieve large
convergence domains (i.e. initial state conditions for which
estimation error convergence is guaranteed) without increasing
the sensitivity to measurement noise. LMI techniques have
been used in [25], [27] and [26] specifically for LPV system.
For feedback linearizable systems, large convergence domains
and model uncertainties are taken into account in [12], while
also additive measurement noise is considered in [19]. In
the last contribution, the observer gain switches among two
values, one for large state magnitudes (semiglobal observer)
and the other for small values (local observer). Also recently
in [24] sensitivity of a nonlinear observer versus measurement
disturbances has been characterized with the notion of quasi-
Disturbance-to-Error Stability (qDES). However, the issue of
noise sensitivity reduction is not addressed in the above works.
For the same class of nonlinear systems considered in [12] and
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[19], very recently [8] and [9] consider a trade-off between
convergence speed and the bound on the estimation error,
using a bank of HGO observers. For semiglobal observers the
effect of measurement disturbances on the ultimate error bound
strongly depends on how large the convergence domain is, in
other words the observers are designed using the knowledge
of the invariant compact set containg the system’s trajectories.
A consequence is that noise sensitivity can be reduced only at
the price of a significant reduction of the convergence domain.
Moreover, the observer design depends on the a priori given
convergence domain: changes in convergence domain require
re-designing the observer parameters. In [21] and in [4] the
issue of how reducing the sensitivity of a class of observers
with global convergence properties to additive measurement
noise is discussed for some classes of nonlinear systems with
bounded solutions (with unknown bound). However, the error
bounds depend on the state magnitude so that for large state
initial conditions the state estimate has large excursions and
significant deviations from the actual value of the state. More
recently, the work [3] unites local observers, which have good
error performances versus measurement noise like extended
Kalman filters (EKF’s) for instance, with semiglobal HGO’s,
which have bad error performances. Systems with bounded
solutions are considered and the resulting observer has a
switching structure which guarantees the compromise between
bad (semiglobal) and good (local) error performances but its
correct functioning depends on some local and semiglobal
norm estimators together with the exact knowledge of the
domains of attraction of the local and semiglobal observers.
Moreover, as noticed by the authors, the results may require
small disturbances.

In this paper we consider a quite general class of nonlinear
systems with model uncertainties (or state noise) and mea-
surement noise and design state observers with the primary
objective to optimize the error performances in terms of
robustness and noise sensitivity. Important contributions of our
work over the existing literature are: 1) global convergence
domains (in contrast with a priori given and bounded domains
as in [19], [8] and [3]), 2) no specific system’s structure (in
contrast with feedback linearizable systems as in [19], [8]
and [9]) taking into account state and measurement noise at
the same time and 3) new results on global observers in the
absence of noise (in contrast with more restrictive conditions
as in [17] and [1]). We do not require boundedness of system’s
solutions: this has the beneficial effect of obtaining asymptotic
error bounds and conditions for improving noise sensitivity
not dependent on the convergence domain so that we may
improve noise sensitivity without shrinking the estimation
error convergence domain. Since good error performances are,
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as well known, locally achieved for nonlinear systems by
EKF’s, we design our observers with a structure the closest
as possible to an EKF. In doing this, we follow previous
works on Kalman-type filters as for instance [5], [6], [7],
[10] and [20], in which globally Lipschitz or linear up to
output injection systems (with inputs and no disturbances) are
mainly considered. In all these works, the observer gain matrix
is updated by the on-line solution of a (differential) Riccati
equation. For achieving good results also for systems which
are not globally Lipschitz or linear up to output injection the
design of the (differential) Riccati equation takes into account
also the magnitude of the state through a state norm estimator.
The observer we propose in this paper consists of the following
parts: I) a state norm estimator (which we call N -filter) and
II) a chain of filters (which we refer to as K -filters) driven by
the N -filter. Each K -filter updates its gain matrix using the
output of the N -filter and the solution of a Riccati inequality,
similarly to what happens in a steady state Kalman filter.
The chain of these filters implements de facto a sequential
optimization process of the error performances in terms of
noise and model uncertainties sensitivity.

II. NOTATION

(I)(vector spaces). Rn (resp. Rnˆs) is the set of n-dimensional
real column vectors (resp. n ˆ s matrices). Rě (resp. Rą)
denotes the set of non-negative real numbers (resp. positive
real numbers). For any vector v P Rn we denote by vi the i-
th element of v. Moreover, colpv1, . . . , vnq is the vector with
entries v1, . . . , vn and diagpv1, . . . , vnq is the diagonal matrix
with diagonal entries v1, . . . , vn. C is the set of complex
numbers and σpSq Ă C denotes the spectrum of S P Rnˆn,
with λSmin :“ minλPσpSq <pλq and λSmax :“ maxλPσpSq <pλq,
where <pλq stands for the real part of λ P C. Pną (resp.
Pně) is the set of symmetric positive definite (resp. semi-
definite) matrices S P Rnˆn. Given two symmetric matrices
A,B P Rnˆn we mean by B ď A that A´B P Pně.
(II)(weighted and induced norms). |v| denotes the absolute
value of v P R, }v} :“

?
vJv denotes the euclidean

norm of v P Rn and the induced norm of S P Rmˆn
is }S} :“ supxPRnzt0up}Sx}{}x}q. For each F P Pmą and
G P Pną, the F -weighted norm of v P Rn is }v}F :“

?
vJFv

and the induced pF,Gq-weighted norm of S P Rmˆn is
}S}pF,Gq :“ supxPRnzt0up}Sx}F {}x}Gq. With some abuse
of notation, for F P Pmą , G P Pně and γ ą 0 we write
}S}pF,Gq ď γ by meaning that }Sx}F ď γ}x}G for all x P Rn
or, equivalently, SJFS ď γ2G.
(III)(monotone functions). Let K0 (resp. K8) be the set of
continuous non-decreasing (resp. strictly increasing) functions
f : Rě Ñ Rě (resp. such that fp0q “ 0 and limsÑ`8 fpsq “
`8). Let K1

8 be the set of functions f P K8 continuously

differentiable on Rą and such that 0 ă infsą0
s

fpsq

df

ds
psq (for

instance K8 algebraic functions are all in K1
8). Let L8 be the

set of continuous strictly decreasing functions f : Rą Ñ Rą
such that limsÑ`8 fpsq “ 0. Let L1

8 be the set of functions
f P L8 continuously differentiable on Rą and such that

supsą0

s

fpsq

df

ds
psq ă 0 (for instance L8 algebraic functions

are all in L1
8).

(IV)(saturation functions). A saturation function satc : Rn Ñ
Rn with saturation level c ą 0 is a function satcpxq :“
psatcpx1q, . . . , satcpxnqq

J, x P Rn, such that for each i “
1, . . . , n and xi P R:

satcpxiq “

"

xi xi P r´c, cs,
signpxiqc otherwise.

(1)

Although this function is not continuously differentiable at
all points, it is possible to smooth it out. In this paper we
will consider at least once continuously differentiable such
saturation functions with no further comment.

III. CLASS OF SYSTEMS

Consider a nonlinear system of the general form

9x “ fpx, dq :“ Ax`F px, dq,

y “ hpx, dq :“ Cx`H px, dq (2)

with state x P Rn, output y P Rp, F and H continuously
differentiable functions with BF

Bx p0, 0q “ 0 and BH
Bx p0, 0q “ 0,

and disturbances (or exogenous inputs) d P D, the space of
(piecewise) continuous bounded functions d : Rě Ñ D Ă Rs
with sup norm }d}8 :“ suptPRě }dptq} uniformly bounded
by a known d8 ą 0. We will denote xptq, yptq and dptq by
xt, yt and, respectively, dt, with initial state xp0q “ x0 at
t “ 0. More precisely, xtpx, s; dq (resp. ytpx, s; dq) will denote
the value at time t of the unique solution (resp. output) of
system (2) with input d and initialized at x at time s, i.e.
xspx, s; dq “ x. Our problem is to design state estimators
for (2) with good performances in terms of noise sensitivity.
Throughout the paper, we assume forward completeness of
(2).
(FWC). (Forward completeness) The solutions xt of (2) are
defined for all px0,d, tq P Rn ˆD ˆ Rě.

Completeness is a severe restriction. However, as well-
known, a necessary condition for the existence of an observer
for (2) is the forward unboundedness observability property
(FUO). Any system (2) satisfying the (FUO) property also
satisfies (FWC) after a suitable change of the time scale.

IV. AN OVERVIEW OF THE ESTIMATION FRAMEWORK

In this introductory section we describe the estimation
framework and how it works, leaving the technicalities to
be discussed in the next sections. The first element in our
framework is a state norm estimator (which, in what follows,
we refer to as N -filter), in the sense that its output is some
variable pvt from which an upper bound of the state norm }xt}
is determined as follows: for some β P K1

8 and pγ ą 1 we
have

}xt} ď β´1ppvt ` pγq (3)

for all px0,d, tq P Rn ˆ D ˆ rt0,`8q (t0 depending on the
initial state x0). The N -filter has the following parametric
structure:

9
pvt “ ´λpvt ` αp}yt}q ` δpd8q, pv0 ą 0, (4)
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with λ P p0, 1q. The functions δ, α P K0 and λ P p0, 1q are
obtained from a differential inequality of the form

9vpxt, tq ď ´λvpxt, tq ` αp}yt}q ` δp}dt}q (5)

which must hold along the solutions of (2) for some contin-
uously differentiable function v : Rn ˆ Rě Ñ R and for all
px0,d, tq P Rn ˆ D ˆ Rě. On the other hand, the function
β P K1

8, which is instrumental in (3) to determine an upper
bound for the state norm }xt}, is related to vpx, tq as follows:
there exists a time t ą 0 for which vpx, tq ě βp}x}q for all
px, tq P Rn ˆ rt,`8q. In section V we will discuss existence
conditions (Proposition 5.1) and constructive methodologies
(Propositions 5.2 and 5.3) for the functions v, β, δ and α with
the above mentioned properties.

The second element in our framework is a set of filters
(which, in what follows, we refer to as K -filters) adaptively
tuned by the N -filter and sequentially connected to each other
so that to form a dynamical chain. Each K pkq-filter, k ě 1,
of the chain is specifically designed for estimating the state of
(2) as follows. The variable pX

pk´1q

t (we are setting pX
p0q

t :“ 0)
keeps track of the state estimate of (2) up to the K pk´1q-

filter. The K pk´1q-filter feeds forward pX
pk´1q

t and 9
pX
pk´1q

t

to the K pkq-filter (the next filter in the dynamical chain),
which estimates the error epkqt :“ xt ´ pX

pk´1q

t described by
the equations:

9epkqt “ Aepkqt ` pΨ
pkq
t `F pepkqt ` pX

pk´1q

t ,dtq,

wpkqt “ Cepkqt `H pepkqt ` pX
pk´1q

t ,dtq, (6)

with pΨ
pkq
t :“ ApX

pk´1q

t ´
9
pX
pk´1q

t and output error wpkqt :“

yt ´ CpX
pk´1q

t . Consistently with the fact that pX
p0q

t :“ 0, the
first filter of the chain, i.e. the K p1q-filter, is designed on (2)
and computes a first estimate pX

p1q

t of xt.
The K pkq-filter estimates epkqt with the variable pepkqt and

updates the state estimate of (2) as pX
pkq

t :“ pepkqt ` pX
pk´1q

t . For
the K pkq-filter we propose the following parametric structure:

9
pe
pkq

t “Apepkqt ` pΨ
pkq
t ` xF pkqppepkqt , pX

pk´1q

t ,Λpkqppvt ` pγqq

`K pkqppvt ` pγqpwpkqt ´ pwpkqt q,

pwpkqt “ Cpepkqt ` xH pkqppepkqt , pX
pk´1q

t ,Λpkqppvt ` pγqq, (7)

with pvt the output of the N -filter, pγ ą 1 and

K pkqpzq :“
γ
pkq
A pzq

pγ
pkq
C pzqq2

Ppkq´1
pzqCJR´1pe

pkq
d8
` pX

pkq
d8
q, (8)

Ppkqpzq :“ ΛJpzqΠpkqΛpzq,

xF pkqppe, pX,Λq:“F
´

Λ´1sat
e
pkq
d8

pΛpeq ` Λ´1sat
xX
pkq
d8

pΛ pXq, 0
¯

,

xH pkqppe, pX,Λq:“H
´

Λ´1sat
e
pkq
d8

pΛpeq ` Λ´1sat
xX
pkq
d8

pΛ pXq, 0
¯

,

where the admissible choices for the design parameters
e
pkq
d8
, pX

pkq
d8

ą 0 (depending only on d8), Πpkq P Pną and
functions R : Rą Ñ Ppą, Λpkq : Rą Ñ Rnˆn, γpkqA P K0

and γ
pkq
C P K8 are discussed in section VI-B relying on a

certain number of assumptions on A,C, F and H . Estimation

error convergence is discussed in Theorem 6.1 (for a K pkq-
filter designed on (6) with k ě 2) and, respectively, in
Theorem 6.2 (for the K p1q-filter, which is designed on (2)).
A first result ((58), Theorem 6.1) states that, under the given
assumptions on A,C, F and H , the norm of the estimation
error epk`1q

t :“ xt´ pX
pkq

t satisfies an asymptotic bound of the
form:

lim sup
tÑ`8

}Λpkqppvt ` pγqepk`1q
t }

γ
pkq
d ppvt ` pγq

ă c
pk`1q
d8

, (9)

where cpk`1q
d8

ą 0 (depending only on d8) and γpkqd P L1
8 are

are directly obtained from the given assumptions. From (9) it
also follows that

lim sup
tÑ`8

}epk`1q
t }

ωpkqppvtq
ă c

pk`1q
d8

(10)

where ωpkq P K0 is defined as

ωpkqpsq :“ γ
pkq
d ps` pγq{

b

λ
ΛpkqJps`pγqΛpkqps`pγq
min .

The bound (10) provides a rough measure of how poor the
asymptotic performances of the state estimate pX

pkq

t are in terms
of noise sensitivity and sensitivity to initial state conditions.
A second important result ((59), Theorem 6.1) states that if,
in addition,

sup
sě1

ωpkqpsq :“ γ
pkq
8 ă `8 (11)

then

lim sup
tÑ`8

}epk`1q
t } ă γ

pkq
8 c

pk`1q
d8

. (12)

The bound (12) corresponds to a more desirable situation in
terms of noise sensitivity, indeed the bound on the estimation
error norm is not sensitive to initial state conditions and
depends only on d8. Also, this bound may be optimized by
properly tuning the filter’s design parameters. However, in
contrast with our assumptions on A,C, F and H , condition
(11) is somewhat restrictive: it holds, for instance, when F
and H are globally Lipschitz but also in many other cases
(example 6.1). We observed that there are specific structures of
F and H in which (11) may fail (see a detailed discussion in
remark 6.9 with slight modifications of example 6.1). In view
of this, the main purpose of the chain of K-filters is to improve
sequentially the error performances of the Kp1q-filter when
(11) fails for k “ 1. By improving the error performances
we mean guaranteeing tighter asymptotic bounds (10) on the
estimation error norm. For sequentially optimizing the error
performances of the Kp1q-filter we proceed as follows: first,
for each Kpkq-filter we design Λpkq so as to slow down the
growth rate of ωpkq and tend (as the number k of K-filters
increases) to the “limit” condition (11). At the same time, for
guaranteeing an actual improvement of the asymptotic bound
(10) (as k increases), we compare the error performances of
pX
pkq

t and, respectively, pX
pk´1q

t as follows:

lim sup
tÑ`8

ωpkqppvtqc
pk`1q
d8

ωpk´1qppvtqc
pkq
d8

“ rpkq (13)
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i.e. by comparing the corresponding asymptotic error bounds
(10). As a consequence of (13), the state estimation error
bound of pX

pkq

t is asymptotically reduced by a factor rpkq if

compared with that of pX
pk´1q

t and if rpkq ă 1 we say that pX
pkq

t

outperforms pX
pk´1q

t by p1 ´ rpkqq ˆ 100p%q (section VII-A,
definition 7.1). In this sense we mean that the noise sensitivity
of pX

pkq

t is improving by p1´rpkqqˆ100p%q in comparison with
pX
pk´1q

t . In our framework, the condition rpkq ă 1 is achieved
by properly designing epkqd8 , pX

pkq
d8

and Πpkq in (8).
In section VII-C, under the same assumptions on (2) as of

Theorem 6.2 and recalled at the beginning of section VII-B for
sake of clarity, we give the details of a recursive algorithm for
designing the chain of K -filters in such a way that each K -
filter outperforms its predecessor in the chain. The algorithm
starts at step I with the design of the N -filter and the K p1q-
filter on the system (2) (according to Theorem 6.2) with the
initial state estimate pX

p1q

t ; in the following recursive steps II-III
a K pkq-filter (k ě 2) is designed on the system (6) (according
to Theorem 6.1) using pX

pk´1q

t and updating the state estimate

as pX
pkq

t . Assumptions of Theorem 6.1 on (6) are guaranteed by
design of the previous K pk´1q-filter in the chain and the initial
assumptions on (2). Finally, at step IV structural conditions on
the design parameters of the K pkq-filter are given for rpkq ă 1.
The algorithm is iterated for the next K pk`1q-filter by jumping
back to step II.

V. DESIGN OF STATE NORM ESTIMATORS

The first issue we discuss in detail is the design of a state
norm estimator (i.e. a N -filter) for (2). To this aim, we
formulate the following assumption:
(SNE). (State norm estimators) There exist a continuously
differentiable function v : RnˆRě Ñ R, λ ą 0 and δ, α P K0

such that

(PDI) :
Bv

Bx
px, tqfpx,dtq `

Bv

Bt
px, tq (14)

ď ´λvpx, tq ` αp}hpx,dtq}q ` δp}dt}q,

for all px,d, tq P RnˆDˆRě. In addition, there exist β P K1
8

and t ě 0 such that for all px, tq P Rn ˆ rt,`8q

(ULB) : vpx, tq ě βp}x}q. (15)

We also say that the tuple pv, λ, α, δ, β, tq satisfies a
(SNE) condition and we use separate terminologies as well:
pv, λ, α, δq satisfies a (PDI) condition or pv, β, tq satisfies a
(ULB) condition. Moreover, we directly assume λ P p0, 1s
(otherwise, we consider mintλ, 1u in place of λ in (PDI)).

The function vpx, tq satisfying (SNE) is reminiscent of
exponential IOSS-Lyapunov function previously introduced in
[14]: in contrast, our function vpx, tq is time-varying and lower
bounded by a K1

8-class function of }x} after some finite time
t. As in [14], the interest in (14), (15) is motivated by the
following result.

Proposition 5.1: Assume pv, λ, α, δ, β, tq satisfies a (SNE)
condition. For each px0,dq P Rn ˆ D and pγ ą 0 there exists
t0 ě t such that for t ě t0:

}xtpx0, 0; dq} ď β´1ppvtppv0, 0; yq ` pγq, (16)

where pvtppv0, 0; yq is the output of the filter
9
pvtppv0, 0; yq “ ´λpvtppv0, 0; yq ` αp}ytpx0, 0; dq}q

` δpd8q, pv0 ą 0. (17)

Proof. On account of (14) for all px0,d, tq P Rn ˆD ˆ Rě
d

dt
vpxtpx0, 0; dq, tq ď ´λvpxtpx0, 0; dq, tq

`αp}hpxtpx0, 0; dq,dtq}q ` δp}dt}q.

By subtracting (17) from the latter and using Gronwall’s
inequality, we get for all px0,d, tq P Rn ˆD ˆ Rě
vpxtpx0, 0; dq, tq ď pvtppv0, 0; yq ` e´λt|vpx0, 0q ´ pv0|. (18)

Inequality (16) follows directly from (15). Ÿ

Proposition 5.1 proves that a (SNE) condition guarantees the
existence of a N -filter, defined in (17), and precisely states
in which sense, specified by (16), a state norm estimate has
to be meant. In this sense we say that a tuple pv, λ, α, δ, β, tq
satisfies a (SNE) condition with associated N -filter (17) and
state norm estimate (16).

We list below some useful properties:
Property (P1). Let pv, λ, α, δ, β, tq satisfies a (SNE) condition.
Any tuple pv ` b, λ, α, δ ` λb, β, tq, with b ą 0, still satisfies a
(SNE) condition (this trivially follows from the definition).
Property (P2). Let pv, λ, α, δq satisfies a (PDI) condition and
vpx, tq ě βp}x}q ´ b for some b, t ą 0, β P K1

8 and for all
px, tq P Rn ˆ rt,`8q. The tuple pv ` b, λ, α, δ ` λb, β, tq
satisfies a (SNE) condition (this follows from Property (P1)).
Property (P3). Given µ, ν ą 0, it is possible to re-design
a tuple pv, λ, α, δ, β, tq satisfying a (SNE) condition into a
new tuple prv, rλ, rα, rδ, rβ, tq, with rβpsq :“ νsµ, still satisfying
a (SNE) condition (the proof is found in section A of the
appendix).

Remark 5.1: The presence of t ě 0 in a tuple
pv, λ, α, δ, β, tq satisfying a (SNE) condition is a consequence
of the fact that vpx, tq is time-varying. As it will be shown in
section V-B (see assumption (BWR)), t may be very small but
nonzero and it can be interpreted as a time lapse needed for
reconstructing the initial state condition x from (backward)
output trajectories. For having t “ 0 we have to look for
stationary (i.e. time-invariant) solutions vpxq of the (PDI)
condition (under more restrictive conditions). Ÿ

Example 5.1: (Linear systems). Consider a linear system

9x “ fpx, dq :“ Ax`Bd, y “ hpx, dq :“ Cx` Pd

with detectable pC,Aq. Let L P Rnˆp be such that σpA ´
LCq Ă C´ and Q,Π P Pną be such that ΠpA´ LCq ` pA´
LCqJΠ “ ´Q. If vpxq :“ xJΠx we have for any a0, d0 P Rą
and for all px,d, tq P Rn ˆD ˆ Rě
Bv

Bx
pxqfpx,dtq ď ´

λQmin
λΠ
max

vpxq ` αp}hpx,dtq}q ` δp}dt}q

`xJΠ
´ 1

a0
LLJ `

1

d0
pB ´ LP qpB ´ LP qJ

¯

Πx (19)
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with αpsq :“ a0s
2 and δpsq :“ d0s

2. If, in addition, a0, d0 ą 0

are chosen so that λ0 :“
λQmin
λΠ
max

´ λSmax ą 0 where

S :“ Π1{2
´ 1

a0
LLJ `

1

d0
pB ´ LP qpB ´ LP qJ

¯

Π1{2, (20)

then pv, λ0, α, δ, β, 0q satisfy a (SNE) condition with βpsq :“
λΠ
mins

2. Ÿ

Example 5.2: Consider the (Van Der Pol) system
ˆ

9x1

9x2

˙

“ fpx, dq :“

ˆ

0 1
´1 1

˙ˆ

x1

x2

˙

´

ˆ

0
x2

1x2

˙

`

ˆ

0
x1

˙

d1,

y“hpx, dq :“ x1 ` d2. (21)

Let Q,Π P P2
ą be such that

Π

ˆ

0 1
´1 ´1

˙

`

ˆ

0 1
´1 ´1

˙J

Π “ ´Q (22)

and a1, a2 ą 0 be such that λ0 :“
λQmin
λΠ
max

´ λSmax ą 0 where

S :“ Π1{2
´ 1

a1

ˆ

1 ´1
´1 1

˙

`
1

a2

ˆ

0 0
0 1

˙

¯

Π1{2.

Define vpxq :“ zJpxqΠzpxq, where zpxq :“ px1, x2 ´ 2x1 `

p1{3qx3
1q
J. There exist b, β0 ą 0 such that vpxq ě β0}x}

2{3´

b for all x P R2. It follows from Property (P2) that pv `
b, λ0, α, δ` bλ0, β, 0q satisfy a (SNE) condition with βpsq :“
β0s

2{3 and 6-th degree polynomials α, δ P K0 (we leave the
computations to the reader). Ÿ

A. Closed-form solutions of (PDI)

For obtaining closed-form solutions of (PDI), we discard
finite exit times from Rn for the backward solutions of (2).
(BWC). (Backward completeness) The solutions xspx, t; dq of
(2) are defined for all px,d, t, sq P Rn ˆD ˆ Rě ˆ r0, ts.

In what follows we will use the notation

Yspx, t; dq :“ hpxspx, t; dq,dsq ´ hp0,dsq. (23)

Proposition 5.2: Under assumption (BWC) and for any
given λ ą 0 and α P K0, pv, λ, α, δq satisfies a (PDI) condition
with

vpx, tq :“

ż t

0

e´λpt´sqαp}Yspx, t; dq}qds (24)

and

αpsq :“ αp2sq, δpsq :“ sup
}d}ďs

αp2}hp0, dq}q. (25)

Proof. Notice that for any ∆t P R

xspxt`∆tpx, t; dq, t`∆t; dq “ xspx, t; dq (26)

We have

vpxt`∆tpx, t; dq, t`∆tq ´ vpx, tq

∆t
“

´e´λ∆t ´ 1

∆t

¯

vpx, tq

`
e´λ∆t

∆t

ż t`∆t

t

e´λpt´sqαp}Yspx, t; dq}qds.

Letting ∆t tend to 0 we get
Bv

Bx
px, tqfpx,dtq `

Bv

Bt
px, tq

“ ´λvpx, tq ` αp}hpx,dtq ´ hp0,dtq}q
ď ´λvpx, tq ` αp}hpx,dtq}q ` δp}dt}q, (27)

where we used αps` rq ď αp2sq ` αp2rq for all s, r ě 0. Ÿ

B. Sufficient conditions for (ULB)

In order to have the function vpx, tq in (24) uniformly lower
bounded as specified in the (ULB) condition, we invoke a kind
of uniform (backward) state reconstructibility property from
the outputs.
(BWR). (Uniform backward reconstructibility). There exist
t, b ą 0, α P K0 and β P K1

8 such that for all px,dq P Rn ˆD
ż t

0

αp}Yspx, t; dq}qds ě βp}x}q ´ b. (28)

A similar reconstructibility property was used in [22] in a
noise-free context for state-dependent solutions of differential
Riccati equations. For linear systems (2): 9x “ Ax ` Fd,
y “ Cx ` H d, assumption (BWR) is strictly related to
observability under unknown inputs d ([16]).

Proposition 5.3: Under assumptions (BWC) and (BWR) and
for any given λ ą 0 there exist t, b ą 0 and β P K1

8 such
that pv ` b, λ, α, δ ` λb, β, tq satisfies a (SNE) condition with
v : Rn ˆ Rě defined in (24) and α, δ P K0 defined in (25).

Proof. Let t, b ą 0, α P K0 and β P K1
8 be as in assumption

(BWR) and v : Rn ˆ Rě as in (24). For all t ě t we have

vpx, tq ě

ż t

t´t

e´λpt´sqαp}Yspx, t; dq}qds

ě e´λt
ż t

0

αp}Yϑpx, t; dq}qdϑ (29)

and dϑ :“ dϑ`t´t. But d P D and on account of assumption
(BWR)

vpx, tq ě e´λtpβp}x}q ´ bq :“ βp}x}q ´ b (30)

for all px, tq P Rn ˆ rt,`8q, which proves that pv ` b, β, tq
satisfy a (ULB) condition. On the other hand, pv` b, λ, α, δ`
λbq satisfies a (PDI) condition by proposition 5.2 and Property
(P2). Ÿ

From (BWR) we see that t may be very small but nonzero.
More conditions for (BWR) based on Lie derivatives will be
given in other related papers.

C. A stronger (SNE) condition

We have seen how the (SNE) condition has a key role
in the design of a N -filter. However, when the N -filter is
coupled with another filter (like an observer) it is better to
have αp}hpx, dq}q not increasing faster than vpx, tq. For this
reason, we introduce a slightly stronger (SNE) condition:
(SSNE). There exists a tuple pv, λ, α, δ, β, tq satisfying a (SNE)
condition and, in addition, there exist ζ ą 0 and ξ P K0 such
that for all px, dq P Rn ˆD and t ě t

(UUB) : αp}hpx, dq}q ď ζvpx, tq ` ξp}d}q. (31)



6

Using a similar terminology to the previous sections, we say
that a tuple pv, λ, α, δ, β, ζ, ξ, tq satisfies a (SSNE) condition
(with associated N -filter (17)) or, referring only to (31),
that pv, α, ζ, ξ, tq satisfies a (UUB) condition. Notice that, on
account of the (ULB) condition, there always exist ζ P K and
ξ P K0 such that for all px, dq P Rn ˆD and t ě t

αp}hpx, dq}q ď ζpvpx, tqq ` ξp}d}q. (32)

The (UUB) condition requires a linear1 ζ P K0.
Example 5.1 (cont’ed). The tuple pv, λ, α, δ, β, ζ, ξ, 0q,

where pv, λ, α, δ, β, 0q is the tuple which satisfy a (SNE)
condition in example 5.1, satisfy a (SSNE) condition with
ζ :“ 2a0}C}

2

λΠ
min

and ξpsq :“ 2a0}Q}
2s2, with a0 ą 0 given

in (20). Ÿ

Example 5.2 (cont’ed). The tuple pv, λ, α, δ, β, ζ, ξ, 0q,
where pv, λ, α, δ, β, 0q is the tuple which satisfy a (SNE)
condition in example 5.2, cannot satisfy a (SSNE) condition
for any ζ ą 0. We modify vpxq in example 5.2 as follows:

rvpxq :“ vpxq `
1

2

`

0 1
˘

Π

ˆ

1
2

˙

x4
1 (33)

with zpxq :“ px1, x2´2x1q
J and Π given in (22). We obtain a

tuple prv, rλ, rα, rδ, β, ζ, ξ, 0q satisfying a (SSNE) condition, with
4-th degree polynomials rα, rδ, ξ P K0. Ÿ

The following property holds for a tuple
pv, λ, α, δ, β, ζ, ξ, tq satisfying a (SSNE) condition and
it is analogous to Property (P3) for a tuple pv, λ, α, δ, β, tq
satisfying a (SNE) condition.
Property (SP3). Given µ, ν ą 0, it is possible to re-design a
tuple pv, λ, α, δ, β, ζ, ξ, tq satisfying a (SSNE) condition into
a new tuple prv, rλ, rα, rδ, rβ, rζ, rξ, tq, with rβpsq :“ νsµ, still
satisfying a (SSNE) condition (the proof is found in section
B of the appendix).

VI. DESIGN OF K -FILTERS

In view of the introductory explanation of section IV, our
second task is to identify, under general assumptions on A,C,
F and H, a canonical class of filters (which, in what follows,
we refer to as K -filters) for systems of the form (6) which
throughout this section we address as:

9et “ Aet ` pΨt `F pet ` pXt,dtq
wt “ Cet `H pet ` pXt,dtq, (34)

where pΨt and pXt are exogenous known inputs. These
K -filters are adaptively tuned by a N -filter, which will
be assumed at hand together with its associated tuple
pv, λ, α, δ, β, ζ, ξ, tq satisfying a (SSNE) condition. An elegant
mathematical tool for designing the tuning action of a N -filter
on a K -filter is the notion of family of dilations.

1We introduce this extra condition for reducing the design complexity and
we reassure the reader that considering a linear ζ P K is not a technical issue
(this will be addressed in a forthcoming paper).

A. Family of dilations

Let Λ be a family of solutions of the following matrix
differential equation

dΛ

ds
psq “

WΛpsq

s
, s ą 0, (35)

where W P Rnˆn is any symmetric2 matrix with all eigenval-
ues in C´. As well-known, Λpsq :“ elnpsqWλ, for s ą 0 and
λ ą 0, is such parametrized family of solutions. Notice also
that, given δ P K1

8 and µ ą 0, it is always possible to rescale
Λ as

Λrδ, µspsq :“ Λpδpsqqµ, s ą 0, (36)

which is a parametrized family of solutions of

dΛrδ, µs

ds
psq “

1

δpsq

dδ

ds
psqWΛrδ, µspsq, s ą 0. (37)

We call Λ´1rδ, µs (the inverse of Λrδ, µs) a family of dilations
if Λrδ, µs is a parametrized family of (37) and we denote by
G the set of families of dilations (in more general frame-
works families of dilations are introduced in [18] and [13]).
We can define an equivalence relation in G as follows: for
Λ´1rδ1, µ1s,Λ

´1rδ2, µ2s P G we say that Λ´1rδ1, µ1s „

Λ´1rδ2, µ2s if there exist µ ą 0 and δ P K1
8 such that

Λrδ2, µ2spsq ” µΛrδ1, µ1spδpsqq. In this case we say that
Λ´1rδ2, µ2s P G rescales Λ´1rδ1, µ1s P G by pµ, δq P
RąˆK1

8. In what follows we omit, whenever no ambuiguity
shows up, the term between square brackets in Λrδ, µs (resp.
Λ´1rδ, µs) .

Remark 6.1: Family of dilations Λ´1 P G of the form
Λ´1psq “ e´ lnpsqpαW qλ, with α ą 0, are all equivalent.
Therefore, we can rescale a family of dilations simply by
rescaling the eigenvalues of W by α ą 0. �

B. Discussion of the main assumptions on A, C, F and H
The notion of family of dilations is naturally associated with

the notion of (generalized) homogeneity, which we assume
here on the vector field fpeq :“ Ae and the map hpeq :“ Ce.
(HL) (Generalized homogeneous linearization). There exist
Λ´1 P G , γA P K0, γC P K8 such that for all s ą 0

ΛpsqAΛ´1psq

γApsq
“ A,

CΛ´1psq

γCpsq
“ C. (38)

Remark 6.2: While γC P K8 is a reasonable assumption
(on account of the second condition in (38) and the fact that
Λ´1 contains increasing modes: see example 6.1), a more
natural condition for γA would be3 γA P K0YL8 (according
to how the decreasing modes of Λ interact, through A, with the
increasing modes of Λ´1 in the first condition in (38)). Under
this regard, we will say only that the case γA P L8 requires
a more sophisticated design technique for the N -filter based

2This assumption is made only for simplifying our analisys and can be
directly omitted.

3With A “
ˆ

0 1
0 0

˙

, C “
`

1 0
˘

, it is easy to see that γApsq “ s P

K8, γCpsq “ s P K8 with Λpsq :“ diagts´1, s´2u but γApsq “ s´1 P

L8, γCpsq “ s2 P K8 with Λpsq :“ diagts´2, s´1u. On the other hand,
γApsq “ 1 P K0, γCpsq “ s P K8 with Λpsq :“ diagts´1, s´1u.
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on a suitable time rescaling, which goes beyond the scope of
this paper.

Assumption (HL) can be relaxed by requiring homogeneity
only in the 8-limit as follows:

(HL8) : lim
sÑ`8

ΛpsqAΛ´1psq

γApsq
“ A0, lim

sÑ`8

CΛ´1psq

γCpsq
“ C0,

for some A0 P Rnˆn and C0 P Rpˆn, at the price of a
sufficiently large choice of pγ ą 0 in the state norm estimate
(3). However, with (HL8) we can capture many pairs pC,Aq
which are left out by4 (HL). �
Next, we introduce similar (generalized) homogeneity assump-
tions for dominating the nonlinearities of (34) via the homo-
geneous linearization. The idea of homogeneously dominating
the nonlinearities using the linearization comes from previous
works as for example, to cite a few, [17] and, more recently,
[1]. Here, we introduce conditions not dependent on specific
system’s structures and less restrictive, also taking into account
the presence of noise. Recall from the notation section that
for given F P Pmą , G P Pně and S P Rmˆn we write
}S}pF,Gq ď γ by meaning that }Sw}F ď γ}w}G for all
w P Rn or equivalently SJFS ď γ2G.
(HD8) (Generalized homogeneous domination at 8). For all
px, d, sq P Rn ˆD ˆ r1,`8q
›

›

›
Λpsq

BF pw, 0q

Bw

ˇ

ˇ

ˇ

w“Λ´1psqx
Λ´1psq

›

›

›

pFApxq,ΣApxqq
ď γApsq (39)

›

›

›

BH pw, 0q

Bw

ˇ

ˇ

ˇ

w“Λ´1psqx
Λ´1psq

›

›

›

pHCpxq,ΞCpxqq
ď γCpsq (40)

›

›

›
Λpsq

BF pw, dq

Bd

ˇ

ˇ

ˇ

w“Λ´1psqx

›

›

›

pFdpx,dq,Σdpx,dqq
ď γApsqγdpsq (41)

›

›

›

BH pw, dq

Bd

ˇ

ˇ

ˇ

w“Λ´1psqx

›

›

›

pHdpx,dq,Ξdpx,dqq
ď γCpsqγdpsq (42)

with γd P L1
8 and continuous functions FA : Rn Ñ Pną, ΣA :

Rn Ñ Pně, Fd : Rn ˆ D Ñ Pną, Σd : Rn ˆ D Ñ Psě,
HC : Rn Ñ Ppą, ΞC : Rn Ñ Pně, Hd : Rn ˆ D Ñ Ppą and
Ξd : Rn ˆD Ñ Psě with ΣAp0q “ 0 and ΞCp0q “ 0.

By setting

γpsq :“ tγApsq, γCpsq, γdpsqu,

V pxq :“ tFApxq,ΣApxq,ΞCpxq, HCpxqu,

Zpx, dq :“ tFdpx, dq,Σdpx, dq, Hdpx, dq,Ξdpx, dqu,

we also say that pΛ´1, γ, V, Zq satisfy a (HL)+(HD8) condi-
tion. The matrices FA, Fd, HC , Hd, ΣA,Σd, ΞC and Ξd are
weight matrices which can be properly selected (see example
6.1 below).

Remark 6.3: (Globally Lipschitz F and H ). If F and H
are globally Lipschitz, (HL), (HL8) , (HD8) are all satisfied
with the simple choice

Λpsq “ p1{sqI, γpsq “ t1, s, 1{su

and any choice of the weigths consistent with (39)-(42). If
BFpx,0q
Bx ” 0 (resp. BH px,0q

Bx ” 0) we can take ΣA ” 0 (resp.

4For instance, C “ C0 “
`

1 0
˘

A “

ˆ

0 1
2 1

˙

, A0 “

ˆ

0 1
0 1

˙

with

Λpsq “

ˆ

s´1 0
0 s´2

˙

and γApsq “ γCpsq “ s.

ΞC ” 0) with arbitrary FA (resp. HC) and if BFpx,dq
Bd ” 0

(resp. BH px,dq
Bd ” 0) we can take Σd ” 0 (resp. Ξd ” 0) with

arbitrary Fd (resp. Hd). �
Remark 6.4: (Invariance of (HL)+(HD8) condition under

rescaling of Λ´1). An important property of the (HL)+(HD8)
condition, extensively used in designing the chain of K-
filters, is that this condition is invariant under rescaling (or re-
parametrization) of Λ´1. In other words, by re-parametrizing
Λ´1 as Λ´1 ˝δ, δ P K1

8, condition (HL)+(HD8 remains valid
by re-parametrizing also γ as γ˝δ. To be more precise, let E be
the set of tuples pΛ´1, γ, V, Zq satisfying a (HL)+(HD8) con-
dition. The equivalence relation Λ´1rδ1, µ1s „ Λ´1rδ2, µ2s

in G induces, via (HL) and (HD8), an equivalence relation
pΛ´1, γ, V, Zqrδ1, µ1s „ pΛ´1, γ, V, Zqrδ2, µ2s in E as fol-
lows: there exist δ P K1

8 and µ ą 0 such that

γrδ2, µ2spsq ”

!

γArδ1, µ1spδpsqq,
1

µ
γCrδ1, µ1spδpsqq,

µγdrδ1, µ1spδpsqq
)

,

V rδ2, µ2spxq ” V rδ1, µ1sp
x

µ
q,

Zrδ2, µ2spx, dq ” Zrδ1, µ1sp
x

µ
, dq. (43)

Therefore, (HL)+(HD8) are invariant under rescalings in G in
the following sense: if Λ´1rδ1, µ1s „ Λ´1rδ2, µ2s in G then
pΛ´1, γ, V, Zqrδ1, µ1s „ pΛ

´1, γ, V, Zqrδ2, µ2s in E . �
Remark 6.5: After a normalization of pγ, V, Zq we can

assume

γApsq ě 1, @s ě 1, (44)

and for some γd,0 ă 0

γdpsq “ s´|γd,0|, @s ě 1 (45)

(the proof is found in section C of the appendix). �
Example 6.1: Consider

A “

ˆ

0 1
0 0

˙

, C “
`

1 0
˘

,

F px, dq “ p0,´x2x
2
1 ` x1dq

J, H px, dq “ 0. (46)

It is easy to see that pΛ´1, γ, V, Zq satisfy a (HL)+(HD8)
condition, with Λ´1psq :“ e´ lnpsqW ,W :“ diagt´r,´3ru
and γpsq “ tγApsq, γCpsq, γdpsqu “ ts2r, sr, s´3ru for any
r ą 0. The weights pV,Zq are chosen as follows:

FApxq “ p1` ϕApxqq
´1diagtε, 1u,

ΣApxq “ ϕApxqp1` ϕApxqq
´1I, (47)

Fdpxq “ p1` |x1|q
´1diagtε, 1u, Σdpxq “ |x1|p1` |x1|q

´1,

with any ε ą 0 and ϕApxq :“ 5px2
1x

2
2 ` x4

1q. The remaining
weights HC , Hd,ΞC and Ξd are completely arbitrary since
H ” 0 (remark 6.3): for instance, HC “ Hd :“ µ ą 0 with
any µ ą 0, ΞC “ 0 and Ξd “ 0. Ÿ

We follow up with some assumptions on et and the exoge-
nous input pXt. Let pvt be the output of the N -filter associated
with the tuple pv, λ, α, δ, β, ζ, ξ, tq satisfying a (SSNE) condi-
tion.
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(B8) (Asymptotic bounds). There exist ed8 , pXd8 ą 0 (de-
pending only on d8) such that

lim sup
tÑ`8

}Λppvt ` pγqet} ă ed8 , (48)

lim sup
tÑ`8

}Λppvt ` pγqpXt} ă pXd8 . (49)

We also say that ped8 , pXd8 ,Λ
´1q satisfy a (B8) condition

on (34).
Remark 6.6: The asymptotic bounds (48) and (49) are in

general guaranteed, when designing the chain of K-filters (see
recursive algorithm in section VII-C), by the choice of the
parameters of the previous K-filters in the chain. We state
(48) and (49) as an assumption so that to relate directly the
numbers ed8 , pXd8 with the design parameters of the K-filter
(see the filter equations (54), (55) below). Moreover, when
(34) coincides with (2) (i.e. pΨt ” 0 and pXt ” 0), which
corresponds to the situation in which we are designing the
first K-filter in the chain, (B8) is not assumed a priori but
guaranteed by design of the N -filter (see Theorem 6.2 below).
�
Finally, we introduce a stability margin condition for guaran-
teeing estimation error convergence.
(SM) (Stability margin). There exist

λπ ą λπ :“ 4p|γd,0| ` |λ
W
min|qpζ ` ξpd8q ` δpd8qq (50)

and Π P Pną such that:

LyappΠ,W q :“ ΠW `WΠ ă 0, (51)
RicpΠ, λπ, cq :“ ΠpA` λπIq ` pA` λπIq

JΠ

`ΠBpcqΠ´ CJR´1pcqC ď ´Mpcq (52)

with c :“ ed8 `
pXd8 and

Mpsq :“ sup}x1}ď2nspΣApx1q ` ΞCpx1qq

Bpsq :“ sup }x1}ď2ns
}x2}ďns
}d}ďd8

pF´1
A px1q ` F

´1
d px2, dqq

Rpsq :“ sup }x1}ď2ns
}x2}ďns
}d}ďd8

pH´1
C px1q `H

´1
d px2, dqq. (53)

We also say that the tuple ped8 , pXd8 ,Λ
´1, γ, V, Zq sat-

isfy a (SM) condition with some pΠ, λπq. In (53) as
suppx,dqPS T px, dq we mean and use any matrix T such that
T px, dq ď T for all px, dq P S.

Remark 6.7: (Design of Π). Notice that since σpW q Ă C´,
there always exists Π P Pną for which LyappΠ,W q ă 0. We
require in assumption (SM) that Π P Pną at the same time
satisfies RicpΠ, λπ, cq ď ´Mpcq. The matrix Mpcq represents
a guaranteed margin for the Riccati equation (52) and depends
on the weigths ΣA and ΞC .

Few more comments on the solution of the Lyapunov-
Riccati inequalities (51) and (52). For each λπ ą 0 and c ą 0
for which pC,A`λπIq is detectable and pA`λπI,B0pcqq is
controllable with B0pcqB

J
0 pcq “ Bpcq, it is well-known that

RicpΠ, λπ, cq ď 0 has always a solution Π P Pną. Moreover,
if pC,Aq is in observability canonical form, pA,B0pcqq in
controllability canonical form and W is diagonal, we can
prove the existence of Π P Pną satisfying at the same time
LyappΠ,W q ă 0 and RicpΠ, λπ, cq ď 0. In addition, the

margin Mpcq is even 0 when BFpx,0q
Bx ” 0 and BH px,0q

Bx ” 0
(i.e. multiplicative noise).

In more canonical EKF-based approaches as in [7] a
differential state-dependent Riccati equation is assumed, by
requiring uniform lower and upper bounds for its time-varying
solution. This is too demanding in a nonlinear context. In
our framework, homogeneity domination assumptions (HD8)
with asymptotic bounds (B8) allow us to ask only for the
common solution Π P Pn of a pair of algebraic Lyapunov-
Riccati inequalities. �
Example 6.1 (cont’ed). With the choice of the weights pV,Zq,
parametrized by ε, µ ą 0, in example 6.1, for any given
ed8 ,

pXd8 ą 0, we can always find ε, µ ą 0 for which
ped8 ,

pXd8 ,Λ
´1, γ, V, Zq satisfy a (SM) condition for some

pΠ, λπq. In practice, in this example we can guarantee any
margin M and handle arbitrary asymptotic values ed8 , pXd8 ą

0 in (B8). Ÿ

C. Canonical K -filters and main results

A K -filter for (34) has the following parametric form:

9
pet “ Apet` pΨt`

xF ppet, pXt,Λppvt`pγqq`K ppvt`pγqpwt ´ pwtq,
pwt “ Cpet ` xH ppet, pXt,Λppvt ` pγqq, (54)

K pzq :“
γApzq

pγCpzqq2
P´1pzqR´1ped8 `

pXd8qC
J,

Ppzq :“ ΛJpzqΠΛpzq, (55)
xF ppe, pX,Λq :“ F

´

Λ´1sated8 pΛpeq ` Λ´1sat
xXd8

pΛ pXq, 0
¯

,

xH ppe, pX,Λq :“ H
´

Λ´1sated8 pΛpeq ` Λ´1sat
xXd8

pΛ pXq, 0
¯

.

All the parameters of (54)-(55) are directly obtained from the
given assumptions (HL), (HD8) , (B8) and (SM).

Remark 6.8: The reason for which a K-filter has a Kalman-
type feature lies in the definition of its gain matrix K in (55).
For linear systems (34), BF

Bx ” 0, BH
Bx ” 0 and BF

Bd and BH
Bd are

constant. Moreover, as mentioned in remark 6.3, we can take
Λpsq “ p1{sqI , γpsq “ t1, s, 1{su and, assuming invertible

B :“ BF
Bd

´

BF
Bd

¯J

and R :“ BH
Bd

´

BH
Bd

¯J

, the weigths pV,Zq

can be selected so as ΣA ` ΞC “ 0, F´1
A ` F´1

d “ B and
H´1
d `H´1

C “ R. From definition (55) we have

K “ Π´1R´1CJ (56)

where, from (52), Π P Pną is a solution of the Riccati equation

ΠpA` λπIq ` pA` λπIq
JΠ`ΠBΠ´ CJR´1C “ 0. (57)

Notice that since Λpsq “ p1{sqI then W “ ´I and (51)
trivially holds with the same Π P Pną solution of (57).
The matrices B and R are representative of the state and,
respectively, measurement noise covariances in a stochastic
setting and the Riccati equation (57) (neglecting the term
λπI which guarantees a certain non-zero margin) is the one
associated to a steady state Kalman filter with steady state
error covariance Π´1 and Kalman gain (56). It is interesting
from (52) and (53) to see how the nonlinearities enter the
picture through the weigths F´1

A and H´1
C by affecting the

margin M . �
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We are ready to state the first result of this section (the
proof has been postponed to the appendix), which points out
conditions for the estimation error convergence of a K -filter
(54)-(55) for (34).

Theorem 6.1: Assume (SSNE), (HL), (HD8), (B8) and
(SM). Along the solutions of (34), (54), (17) we have

lim sup
tÑ`8

}Λppvt ` pγqpet ´petq}
γdppvt ` pγq

ăcd8 :“
2ρ8ped8`

pXd8 , d8q
a

λπλΠ
min

,

(58)

where ρ8pr, sq :“ sup }d}ďs,
}x}ďnr

}d}Σdpx,dq`Ξdpx,dq. If in addition

|γd,0| ě |λ
W
min|, (59)

then

lim sup
tÑ`8

}et ´pet} ă γ8cd8 (60)

where γ8 :“
b

supsě1 γ
2
dpsqs

2|λWmin|.
Remark 6.9: Theorem 6.1 presents two asymptotic bounds

for the estimation error. The tighter one is presented in (60)
under the additional condition (59), i.e. the decreasing rate of
γd is at least |λWmin|. As it results from (58), the K-filter (54)
asymptotically steers the (weighted) estimation error norm
}Λppvt`pγqpet´petq}

γdppvt`pγq inside the interval r0, cd8s. However, we can-
not say the same for the estimation error norm }et´pet} unless
(59) holds true. Without this condition, at least one eigenvalue
of the matrix W ` |γd,0|I is negative and let denote by λ its
minimum eigenvalue: λ :“ minjtλj P σpW ` |γd,0|Iqu ă 0.
On account of (45) it follows from (58) that

}et ´pet} ď ppvt ` pγq|λ|cd8 (61)

for t ě t0 (depending on the initial error). The bound (61) on
}et´pet} becomes large with pv|λ|t and can be directly compared
with the tighter bound (60). The smaller the size of |λ| (or,
which is the same, the excess ∆ :“ |λWmin|´|γd,0|), the smaller
the bound on }et´pet} in (61). Notice also that, in our context,
pvt grows unbounded in time if xt does (since pvt is a state norm
estimate) and the error et´pet will grow unbounded according
to (61). On the other hand, if xt is bounded in time, pvt as well
as et ´ pet will be bounded in time according to (61), which
can be recast in the form (60) with a γ8 depending on the
upper bound of pvt. For these reasons, the upper bound (60),
which depends only on d8, is much more satisfactory than
the upper bound (61), which depends on d8 but also on the
large variations of pvt.

The rate condition (59) guarantees the tighter asymptotic
bound (60) on the estimation error norm. In example 6.1,
since ∆ “ 0 and the rate condition (59) is met, the es-
timation error norm satisfies an asymptotic bound (60) and
the K-filter (54) has good error performances. However, an
extra additive measurement disturbance in example 6.1 (i.e.
H px, dq “ d ‰ 0) has a deteriorating effect on the error
performances: indeed, with H px, dq “ d and A,C,F as in
example 6.1, (HL)+(HD8) is satisfied with the same Λ´1,
γApsq and γCpsq but γdpsq “ s´r (i.e. slower decrease rate).
Since now ∆ “ 2r ą 0 we can only obtain a weaker

asymptotic bound (61) and worse error performances. A
simple explanation of this performance deterioration lies in the
high-gain feature of the K-filter (54) in example 6.1: indeed,
in this case K pzq “ diagpz2r, z4rqΠ´1p1, 0qJ (definition
(55)) and an extra additive measurement disturbance has the
effect of deteriorating the error performances of the high-gain
K-filter (54) (compare with semiglobal high-gain observers
for feedback linearizable systems: [12], [2], [19], [11], [8]).
The asymptotic bound (58) corresponds in our framework to
deteriorated error performances and the excess ∆ can be taken
as a quantitative margin for error performances evaluation.
This motivates in the next section the design of chains of K-
filters in which the excess ∆ is progressively reduced and the
error perfomances of the K-filters tend to an ideal situation
characterized by the tighter asymptotic bound (60) (in which
the excess is 0).

The asymptotic bound (60) corresponds to good error per-
formances. If in addition F p0, dq ” 0 and H p0, dq ” 0 (mul-
tiplicative state and measurement disturbances) the noise sen-
sitivity can be reduced to the same extent as c :“ ed8 `

pXd8 :
indeed, if F p0, dq ” 0 and H p0, dq ” 0 then Σdp0, dq ” 0
and Ξdp0, dq ” 0 and ρ8p0, sq “ 0 for all s ě 0 so that c8 in
(60) can be made small if ed8 , pXd8 are small. Notice how the
asymptotic bound (60) depends only on d8 (since ed8 ` pXd8

and, therefore, cd8 does by assumption (B8)): in general,
estimation error bounds depend explicitly on the initial state
in global frameworks ([4], [21]) or implicitly through the
invariant compact set containing the state trajectories in semi-
global frameworks ([12], [19], [11]). Therefore, the error
performances (in term of robustness and noise sensitivity) of
the K -filter (54) in case of excess ∆ “ 0 are good even for,
and actually independent of large state initial conditions. �
A parallel result to Theorem 6.1 is relative to the system (34)
when it coincides with (2) (i.e. pΨt ” 0 and pXt ” 0). As
mentioned in the introductory section IV, this corresponds to
the case in which we design the first K-filter of the chain. The
canonical form of the K-filter is simpler in this case:

9
pxt “ Apxt ` xF ppxt,Λppvt ` pγqq `K ppvt ` pγqpyt ´ pytq,
pyt “ Cpxt ` xH ppxt,Λppvt ` pγqq, (62)

K pzq :“
γApzq

pγCpzqq2
P´1pzqR´1pcqCJ, Ppzq :“ ΛJpzqΠΛpzq,

xF ppx,Λq :“ F
´

Λ´1satcpΛpxq, 0
¯

,

xH ppx,Λq :“ H
´

Λ´1satcpΛpxq, 0
¯

(63)

for c ą 0. As we will see, the asymptotic bounds (B8) are
not a priori assumed here (but guaranteed by the design of
the N -filter) and only an arbitrarily small margin M must be
guaranteed in (SM). The proof of the next result has been
moved to section D of the appendix.

Theorem 6.2: Assume (SSNE), (HL), (HD8) and the
existence of c ą 0 such that pc, 0,Λ´1, γ, V, Zq satisfy
a (SM) condition with some pΠ, λπq. There exists a tuple
prv, rλ, rα, rδ, rβ, rζ, rξ, tq, satysfying a (SSNE) condition with as-
sociated N -filter

9
pvt “ ´rλpvt ` rαp}yt}q ` rδpd8q (64)
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such that along the solutions of (2), (62) and (64) we have

lim sup
tÑ`8

}Λppvt ` pγqpxt ´ pxtq}
γdppvt ` pγq

ă cd8 :“
2ρ8pc, d8q
a

λπλΠ
min

, (65)

with ρ8 as in Theorem 6.1. If, in addition, (59) holds true then

lim sup
tÑ`8

}xt ´ pxt} ă γ8cd8 (66)

with γ8 as in Theorem 6.1.
Remark 6.10: (Design of the N -filter). From the proof of

Theorem 6.2 (in section E of the appendix) it turns out that, for
any given ∆0 P p0, 1q, the tuple pv, λ, α, δ, β, ζ, ξ, tq satisfying
a (SSNE) condition can be always transformed into a new tuple
prv, rλ, rα, rδ, rβ, rζ, rξ, tq, with

rβpsq :“ p
s

c
q

1

∆0|λ
W
max| , (67)

still satisfying a (SSNE) condition with associated N -filter
(64) such that for all pγ ą 1 and ∆ P p∆0, 1s

lim sup
tÑ`8

}Λpppvt ` pγq∆qxt} ă c. (68)

In other words, the N -filter (64) is designed in such a way to
dominate xt under the action of Λ.

Remark 6.11: (Design of the parameter c). In practice,
the parameter c ą 0 such that pc, 0,Λ´1, γ, V, Zq satisfy a
(SM) condition with some pΠ, λπq can be obtained in two
steps as follows. First, determine pΠ, λπq (if any) such that
RicpΠ,W, λπ, 0q ă 0 and ΠW`WΠ ă 0. The first inequality
can be solved under simple detectability and controllability
conditions on A,C, and Bp0q (see for instance remark 6.7).
Secondly, using the fact that Mp0q “ 0 (since FAp0q “ 0
and ΣCp0q “ 0 by assumption (HD8)) and by continuity, it
is easy to find c ą 0 such that pc, 0,Λ´1, γ, V, Zq satisfy a
(SM) condition with pΠ, λπq “ pΠ, λπq. Notice how (SM) is
satisfied with an arbitrarily small margin Mpcq, corresponding
to arbitrarily small values of c ą 0.

It is worth noticing that the above design procedure for
finding pΠ, λπq and c such that pc, 0,Λ´1, γ, V, Zq satisfy
a (SM) condition cannot be used to find pΠ, λπq such that
ped8 ,

pXd8 ,Λ
´1, γ, V, Zq satisfying a (SM) condition (as in

theorem 6.1): indeed, in the first case c is obtained a posteriori
from Π using continuity (and can be chosen arbitrarily small)
while in the second case Π is computed a posteriori from
c :“ ed8 `

pXd8 which is not arbitrarily small. However, the
magnitude of c :“ ed8`

pXd8 can be kept small by increasing
pγ or choosing smaller ed8 , pXd8 ą 0 (see remarks after (72)).
�

VII. CHAINS OF K -FILTERS FOR SEQUENTIAL ERROR
PERFORMANCE OPTIMIZATION

The aim of the next sections is to show that by sequentially
reducing the excess ∆ for each K-filter, we obtain tighter
bounds (58) while tending to the ideal situation which corre-
sponds to the tightest bound (60). The reduction of the excess
∆ can be obtained by rescaling the family of dilations Λ´1

and, on the other hand, the rescaling of Λ´1 corresponds to
rescale the eigenvalues of W in such a way to reduce their
reciprocal distance: as a matter of fact, the ideal situation is

the one for which the eigenvalues of W are all equal, a typical
situation when F and H are globally Lipschitz (see remark
6.3). Before dipping into the details of sequential processing,
we introduce a comparison criterion for error performances
evaluation.

A. A comparison criterion for state estimates

The next definition gives a simple criterion to compare two
different estimates pX

pkq

t , k “ 1, 2, of xt.
Definition 7.1: Let pvt be the output of a N -filter, with pX

p1q

t

and pX
p2q

t estimates of xt such that lim suptÑ`8
}xt´pXpkqt }

ωpkqppvtq
ă

cpkqpd8q, k “ 1, 2, for some ωpkq P K0 and cpkq P K8.

If lim suptÑ`8
ωp2qppvtqcp2qpd8q
ωp1qppvtqcp1qpd8q

:“ r ă 1, we say that pX
p2q

t

outperforms pX
p1q

t by p1´ rq (ˆ100) %.

In other words, pX
p2q

t has better error performances than pX
p1q

t

if it corresponds to a tighter (in percentage) asymptotic bound
on the estimation error norm. Obviously, the fact that pX

p2q

t

outperforms pX
p1q

t by p1 ´ rq (ˆ100) % does not guarantee

that the ratio between the actual values of }xt ´ pX
p2q

t } and

}xt´ pX
p1q

t } be (even asympotically) less than r. In our frame-
work the comparison is made on some conservative asymptotic
bounds on }xt ´ pX

p2q

t } and, respectively, }xt ´ pX
p1q

t }, but by
reducing progressively the ratio between these conservative
bounds it is likely that also the ratio bewteen the actual values
of }xt ´ pX

p2q

t } and }xt ´ pX
p1q

t } will ultimately decrease. The
comparison criterion will be used to compare the estimates
associated to two consecutive K-filters in the chain.

B. Motivations and outline of sequential processing

For explaining what we mean by sequential processing and
how it is implemented in practice, we assume to have at hand
a N -filter together with a K-filter for (2). For this reason, we
assume:
(A1) a tuple pv, λ, α, δ, β, ζ, ξ, tq satisfying a (SSNE) condi-
tion,
(A2) a tuple pΛ´1, γ, V, Zq satisfying a (HL)+(HD8) condi-
tion,
(A3) the existence of c ą 0 such that pc, 0,Λ´1, γ, V, Zq satisfy
a (SM) condition with some pΠ, λπq.

As it follows from (SP3), the tuple pv, λ, α, δ, β, ζ, ξ, tq and
the associated N -filter can be re-designed so that (68) holds
for any given ∆0 P p0,

∆
|λWmin|

s and for all pγ ą 1 and ∆ P

p∆0, 1s. On the other hand, under the given assumptions (A2)-
(A3), the K-filter is designed as pointed out in Theorem 6.2,
with pxt being the estimate of xt and et :“ xt ´ pxt being the
corresponding estimation error.

Assume the excess ∆ :“ |λWmin| ´ |γd,0| ą 0 (otherwise, as
explained in remark 6.9, the error performances of the K-filter
can be considered satisfactory). From Theorem 6.2 we get the
asymptotic bound (65) on et:

lim sup
tÑ`8

}Λppvt ` pγqet}
γdppvt ` pγq

ă cd8 :“
2ρ8pc, d8q
a

λπλΠ
min

. (69)
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On account of (69) with (45), it follows that 5

lim sup
tÑ`8

}Λppvt ` pγqet} ă ed8 :“ cd8 (70)

where Λ
´1

is the rescaling of Λ´1 by p1, δq with δpsq :“ s∆

and ∆ P r ∆
|λWmin|

, 1q. As observed in remark 6.1 this corre-
sponds, equivalently, to rescale the eigenvalues of W by ∆,
i.e. Λpsq “ elnpsqpW qλ where W :“ ∆W . With (70) at hand
and using Theorem 6.1, the idea is to design a second K-filter,
sequentially connected to the first K-filter, for estimating the
error et, described by the equations:

9et “ Aet `Ψt `F pet ` pxt,dtq,
wt “ Cet `H pet ` pxt,dtq, (71)

with wt :“ yt ´Cpxt, Ψt :“ Apxt ´ 9
pxt. For applying Theorem

6.1 to (71), which has the general form (34), we need to
prove that all the assumptions of Theorem 6.1 are met. First
of all, by assumption pA2q and invariance of (HL)+(HD8)
under rescalings of Λ´1 (remark 6.3), pΛ

´1
, γ, V, Zq satisfy a

(HL)+(HD8) condition with γpsq :“ γpδpsqq.
Since Λpsq “ Λps∆q and pxt “ xt ´pet, from (68) and (70)

lim sup
tÑ`8

}Λppvt ` pγqpxt} ă pXd8 :“ c` ed8 . (72)

With (70) and (72) at hand, it follows straightforwardly that
ped8 ,

pXd8 ,Λ
´1
q satisfy a (B8) condition on (71).

Finally, we need to prove that ped8 , pXd8 ,Λ
´1
, γ, V, Zq sat-

isfy a (SM) condition with some pΠ, λπq. In a first scenario, no
matter the values of ed8 , pXd8 are, ped8 , pXd8 ,Λ

´1
, γ, V, Zq

indeed satisfy a (SM) condition (this is the case, for instance,
of example 6.1, in which any guaranteed margin M is achiev-
able). In a second scenario, ped8 , pXd8 ,Λ

´1
, γ, V, Zq cannot

satisfy a (SM) for any pΠ, λπq. In this case, we may resort to
the following heuristics. Since also pc, 0,Λ

´1
, γ, V, Zq satisfy

a (SM) condition with pΠ, λπq, we can try smaller values
of ed8 ă cd8 and pXd8 ă c ` cd8 as close as possible
to 0 and, respectively, c so that ped8 , pXd8 ,Λ

´1
, γ, V, Zq

satisfy a (SM) condition with some pΠ, λπq close to pΠ, λπq.
The possibility that these smaller values of ed8 ă cd8 and
pXd8 ă c ` cd8 still satisfy a (B8) condition is accounted

for by the fact that in practice the estimation error norm is
asymptotically smaller than the state or its estimate norm and
since lim inftÑ`8 pvt ąą 1. Moreover, we can also reduce
the magnitude of ed8 ` pXd8 by increasing pγ and, therefore,
decreasing the magnitude of Λppvt ` pγqet and Λppvt ` pγqpxt in
(70) and, respectively, (72).

With the second K-filter designed on (71) according to
Theorem 6.1 and with the estimate pet of et at hand, we obtain

5We notice that since W is symmetric there exists orthornormal T such
that W “ TJWDT with WD “ diagtλi P σpW q, i “ 1, . . . , nu. Using
standard properties of matrix exponentials and }T } “ }TJ} “ 1 and recalling
that ∆ “ |λWmin| ´ |γd,0|, since ∆ P r ∆

|λWmin|
, 1q and by (45), for all z ě 1

and e P Rn we get }Λpzqe} ď 1
γdpzq

}elnpzqpp∆´1qW´|γd,0|Iq}}Λpzqe} ď

z∆´∆|λWmin|

γdpzq
}Λpzqe} ď }Λpzqe}

γdpzq
. By virtue of this, from (69) we get (70).

from Theorem 6.1 the following asymptotic bound on the error
et :“ et ´pet, analogue to the bound (69) on et:

lim sup
tÑ`8

}Λppvt ` pγqet}
γdppvt ` pγq

ăcd8 :“
ρ8ped8 `

pXd8 , d8q
b

λπλΠ
min

. (73)

It is important to stress the fact that cd8 depends only on d8
(and this will remain so in all subsequent iterations), since ed8
and pXd8 depend by construction only on d8.

The current state estimate pX
p1q

t :“ pxt is updated by the

second K-filter as pX
p2q

t :“ pX
p1q

t ` pet. By comparison of the

asymptotic bounds on et “ xt´ pX
p1q

t in (69) and, respectively,

et “ xt ´ pX
p2q

t in (73) we establish by which amount in

percentage pX
p2q

t outperforms pX
p1q

t (according to the criterion
7.1). The other K-filters in the chain are likewise designed.

C. A recursive algorithm for designing the chain of K-filters

Along the general lines highlighted in the previous section,
we give here the details of a recursive algorithm for the design
of a chain of K-filters. As mentioned at the beginning of
section VII-B, we assume (A1)-(A3) with excess ∆ ą 0.
(I) (Initialization: Design of the N -filter and the first K-filter
in the chain). Let ∆0 P p0, p

∆
|λWmin|

qN s, where N P N is an
estimate of the maximum number of iterations to be performed
by the algorithm. Let pvt be the output of a N -filter, designed
so that (68) holds for all ∆ P p∆0, 1s and pγ ą 1. Let

pΛp1q
´1
, γp1q, V p1q, Zp1qq :“ pΛ´1, γ, V, Zq,

c
p2q
d8

:“
2ρ8pc, d8q
a

λπλΠ
min

,Πp1q :“ Π, W p1q :“W,

Moreover, γdpsq “ s´|γd,0| and γApsq ě 1 for all s ě 1, for
some γd,0 ă 0 (remark 6.5). Set γp1qd,0 :“ γd,0 and ∆p1q :“ ∆.

Let pxt be the ouput of the K-filter designed as pointed out
in theorem 6.2 and et :“ xt ´ pxt be the corresponding state
estimation error. Set ep2qt :“ et and pX

p1q

t :“ pxt, the initial state
estimate of xt. From Theorem 6.2 we have

lim sup
tÑ`8

}Λp1qppvt ` pγqep2qt }
γ
p1q
d ppvt ` pγq

ă c
p2q
d8
. (74)

Set k “ 2.
(II) (Design of the k-th K-filter in the chain). Consider the
rescaled family of dilations

Λpkq
´1
psq :“ Λpk´1q´1

pδpkqpsqq (75)

where

δpkqpsq :“ s∆
pkq

, ∆
pkq
P

” ∆pk´1q

|λW
pk´1q

min |
, 1
¯

. (76)

Also, let epkqd8 ,
pX
pkq
d8
ą 0 be such that

lim sup
tÑ`8

}Λpkqppvt ` pγqepkqt } ă e
pkq
d8
, (77)

lim sup
tÑ`8

}Λpkqppvt ` pγqpX
pk´1q

t } ă pX
pkq
d8
. (78)
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Define the new tuple

pγpkq, V pkq, Zpkqq :“ pγpk´1qpδpkqq, V pk´1q, Zpk´1qq (79)

and Πpkq P Pną be such that pepkqd8 ,
pX
pkq
d8
, γpkq, V pkq, Zpkqq

satisfy a (SM) condition with pΠpkq, λπq. From Theorem 6.1
we get the Kpkq-filter and the asymptotic bound

lim sup
tÑ`8

}Λpkqppvt ` pγqepk`1q
t }

γ
pkq
d ppvt ` pγq

ă c
pk`1q
8 pd8q (80)

where epk`1q
t :“ epkqt ´pepkqt and pepkqt is the output of the Kpkq-

filter.
(III) (State estimate update). Set γpkqd,0 :“ γ

pk´1q
d,0 ∆

pkq
, W pkq :“

W pk´1q∆
pkq

, ∆pkq :“ |λW
pkq

min | ´ |γ
pkq
d,0 | “ ∆pk´1q∆

pkq
and

c
pk`1q
8 pd8q :“

2ρ8pe
pkq
d8
` pX

pkq
d8
, d8q

b

λπλΠpkq
min

. (81)

Update the estimate pX
pk´1q

t of xt as: pX
pkq

t :“ pX
pk´1q

t `pepkqt .
(IV) (Error performances evaluation). If

c
pk`1q
d8

{c
pkq
d8

plim inftÑ`8 pvt ` pγq∆pk´1qp1´∆
pkq
q

:“ rpkq ă 1 (82)

then pX
pkq

t outperforms pX
pk´1q

t by p1´ rpkqq ˆ 100%.
(V) k Ñ k ` 1 and goto (II).

Remark 7.1: Some explanatory remarks are in order for
the design parameters pepkqd8 ,

pX
pkq
d8
q in (77), (78) and for the

outperformance condition (82). To clear up any confusion, we
stress the fact that the existence of pepkqd8 ,

pX
pkq
d8
q satisfying (77),

(78) is always guaranteed by the pk ´ 1q-th iteration. First of
all, since from the pk ´ 1q-th iteration we have

lim sup
tÑ`8

}Λpk´1qppvt ` pγqepkqt }

γ
pk´1q
d ppvt ` pγq

ă c
pkq
d8
, (83)

by definition of Λpkq
´1

in (75) it is guaranteed at the k-th
iteration that

lim sup
tÑ`8

}Λpkqppvt ` pγqepkqt } ă c
pkq
d8

(84)

(in the same way we concluded (70) from (69) in
section VII-B). If, for any given values of e

pkq
d8

and
pX
pkq
d8

, pepkqd8 ,
pX
pkq
d8
, γpkq, V pkq, Zpkqq satisfy a (SM) condi-

tion (as in example 6.1), in view of (84) we pick
any e

pkq
d8

ě c
pkq
d8

in (77). If not, we should no-
tice from the pk ´ 1q-th iteration and the definition of
Λpkq and γpkq that pepk´1q

d8
, pX

pk´1q
d8

, γpkq, V pkq, Zpkqq sat-
isfy a (SM) condition with pΠpk´1q, λπq. In order to have
pe
pkq
d8
, pX

pkq
d8
q as close as possible to pepk´1q

d8
, pX

pk´1q
d8

q so that
pe
pkq
d8
, pX

pkq
d8
, γpkq, V pkq, Zpkqq is likely to satisfy a (SM) con-

dition for some Πpkq close to Πpk´1q, we rather pick values
of epkqd8 ăă c

pkq
d8

. As already accounted for in section VII-B,
this heuristic approach, although not a priori guaranteeing
the validity of (77) with e

pkq
d8

ăă c
pkq
d8

, anyway has reason-
able chances of success in view of the fact that in practice
c
pkq
d8

ąą 1 and lim suptÑ`8 }Λ
pkqppvt ` pγqepkqt } ăă 1.

Moreover, as already noticed, increasing pγ may be benificial
in decreasing the magnitude of epkqd8 by the corresponding
decrease in magnitude of Λpkqppvt ` pγqepkqt in (77).

Once (77) is satisfied with a suitable choice of epkqd8 ą 0,

directly from pX
pk´1q

t “ ´epkqt ` xt and (68) we get

lim sup
tÑ`8

}Λpkqppvt ` pγqpX
pk´1q

t }ăe
pkq
d8
` c. (85)

If, for any given values of e
pkq
d8

and pX
pkq
d8

,
pe
pkq
d8
, pX

pkq
d8
, γpkq, V pkq, Zpkqq satisfy a (SM) condition (as in

example 6.1), in view of (85) we pick any pX
pkq
d8
ě e

pkq
d8
` c in

(78). If not, in order to have epkqd8 `
pX
pkq
d8

as close as possible
to e

pk´1q
d8

` pX
pk´1q
d8

so that pepkqd8 ,
pX
pkq
d8
, γpkq, V pkq, Zpkqq is

likely to satisfy a (SM) condition for some Πpkq close to
Πpk´1q, we rather pick values of pX

pkq
d8

ă e
pkq
d8
` c as close

as possible to c but still with no a priori guarantee on the
validity of (78). Moreover, as already noticed, increasing pγ

may be benificial in decreasing the magnitude of pX
pkq
d8

by the

corresponding decrease in magnitude of Λpkqppvt ` pγqpX
pk´1q

t

in (78).
Finally, few comments on (82). This condition is the result

of applying the comparison criterion 7.1 to the estimates pX
pkq

t

and, respectively, pX
pk´1q

t with

ωpkqppvtq :“
γ
pkq
d ppvt`pγqc

pk`1q
d8

b

λ
ΛpkqJppvt`pγqΛpkqppvt`pγq
min

“ppvt`pγq∆
pkq

c
pk`1q
d8

and using lim suptÑ`8p1{pvtq ď 1{plim inftÑ`8 pvtq. From
the pk ´ 1q-th iteration and the choice of pepkqd8 ,

pX
pkq
d8
q and

Πpkq we have no a priori guarantee that rpkq ă 1. However,
since in practice lim inftÑ`8 pvt ąą 1 it is reasonable to
expect rpkq ă 1 for at least a number of iterations after
which either cpk`1q

d8
{c
pkq
d8
ąą 1 or ∆pk´1qp1 ´ ∆

pkq
q ăă 1.

This is even more evident in unstable systems (2) for which
lim inftÑ`8 }xt} “ `8 and, consistently with the properties
of the state norm estimator, lim inftÑ`8 pvt “ `8 so that
we always have rpkq “ 0. On the other hand, if BFpx,dq

Bd

and BH px,dq
Bd are uniformly bounded (for instance, when the

disturbances are additive) then ρ8ps1, rq “ ρ8ps2, rq for all
s1, s2, r ě 0 and the numerator term in (82) is equal to
c

λΠpk´1q

min

λΠpkq

min

. If, in addition, epkqd8 `
pX
pkq
d8

« e
pk´1q
d8

` pX
pk´1q
d8

then Πpkq « Πpk´1q and
c

λΠpk´1q

min

λΠpkq

min

« 1: in this case

condition (82) is satisfied with rpkq ăă 1 since in practice
lim inftÑ`8 pvt ąą 1. �

D. Simulations

Consider the noisy Duffing oscillator

9x1,t “ x2,t, 9x2,t “ x1,t ´ x3
1,t ` d1,t, yt “ x1,t ` d2,t (86)

with initial state x0 “ p5,´8qJ, d2,t a sinusoidal disturbance
with frequency 20 and amplitude 2 while d1,t a sinusoidal
disturbance with frequency 1 and amplitude 1.
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(a) Sequential estimates for x1 versus time

(b) Sequential estimates for x2 versus time

Figure 1. State xt (black line), first estimate pX
p1q
t (light green line), second

sequential estimate pX
p2q
t (light blue line), third sequential estimate pX

p3q
t

(magenta line).

Assumption (A1) is satisfied for (86) and a N -filter has
been designed according to the lines of section VII-C: 9

pvt “
´pvt ` 8r5 ` y2

t ` 16py2
t ` 4qpy4

t ` 16qs. Assumptions (A2)
and (A3) have been satisfied with W “ diagt´0.4,´0.8u
and γApsq “ s0.4, γCpsq “ s0.4, γdpsq “ s´0.4. Notice that
the excess ∆ :“ |λWmin| ´ |γd,0| “ 0.4 ą 0 (mainly, for
the presence of the additive measurement disturbance d2).
Moreover,

Π “

ˆ

2.5 ´1
´1 0.5

˙

, λπ “ 0.1, c “ 0.07, %8 “ 15, c
p2q
d8
“ 44.

The state xt and the estimate pX
p1q

t :“ pxt, computed by the
first K -filter designed as in step (I) of the algorithm VII-C,
are shown versus time in Figs. 1a) and 1b) (black and light
green lines).

A second K -filter has been designed as in step (II) of the
algorithm VII-C for estimating ep2qt :“ xt ´ pX

p1q

t . We used
∆
p2q
“ 0.5 (therefore, the excess is reduced by a factor 0.5),

e
p2q
d8
“ 0.04 P p0, c

p2q
d8
s “ p0, 44s and pX

p2q
d8

“ 0.7 ě e
p2q
d8
`

c “ 0.11. Moreover, since ep2qd8 `
pX
p2q
d8
“ 0.15 « c we used

Πp2q « Πp1q “ Π so that cp3qd8 « c
p2q
d8

. Using step (IV) of

the algorithm VII-C, we figure out that pX
p2q

t outperforms pX
p1q

t

by « 75% (since lim inftÑ`8 pvt ą 103). With pep2qt being the
estimate of ep2qt , the state xt and its second sequential estimate
pX
p2q

t :“ pX
p1q

t ` pep2qt (updated as in step (III) of the algorithm
VII-C) are shown versus time in Figs. 1a) and 1b) (black and
blue lines).

A third K -filter has been designed as in step (II) of the
algorithm VII-C ep3qt :“ xt ´ pX

p2q

t . We used ∆
p3q

“ 0.5

(once again the excess is reduced by a factor 0.5), ep3qd8 “

0.4 P p0, c
p3q
d8
q “ p0, 44q and pX

p3q
d8
“ 2.3 ą e

p3q
d8
` c « 0.47.

Moreover, since ep3qd8`
pX
p3q
d8
“ 2.7 ą e

p2q
d8
` pX

p2q
d8

we used some
Πp3q ą Πp2q in (SM). Also in this case, using step (IV) of the
algorithm VII-C, we figure out that pX

p3q

t outperforms pX
p2q

t by
« 75%. With pep3qt being the estimate of ep3qt , the state xt and

its third sequential estimate pX
p3q

t :“ pX
p2q

t ` pep3qt (updated as
in step (III) of the algorithm VII-C) are shown versus time in
Figs. 1a) and 1b) (black and magenta lines).

VIII. CONCLUSIONS

We have proposed a framework for designing chains of
K-filters with global convergence properties, robustness and
performing noise sensitivity, adaptively driven by a N -filter.
The state estimate of each K-filter is sequentially processed by
the next K-filter in the chain optimizing the noise sensitivity
by reducing the asymptotic estimation error bound. A recursive
algorithm has been given for designing the chain of filters and
future work will be devoted to improving few critical issues
discussed in section 7.1.

APPENDIX

A. Proof of (P3)

Let pv, λ, α, δ, β, tq satisfy a (SNE) condition. Given µ, ν ą
0, we will show how to find from pv, λ, α, δ, β, tq a new
tuple prv, rλ, rα, rδ, rβ, tq, with rβpsq “ νsµ for all s ě 0, still
satisfying a (SNE) condition. It is sufficient to find a tuple
prv, rλ, rα, rδ, rβ, tq with rβpsq “ sµ for all s ě 0 and satisfying
a (SNE) condition: the new tuple pνrv, rλ, νrα, νrδ, ν rβ, tq will
satisfy our claim. Since β P K1

8 there exist β0 ą 0 for which
β0 ď

s
βpsq

dβ
ds for all s ą 0: this implies b0sβ0 ď βpsq for all

s ě 1 and for some b0 ą 0. For this reason and since by (P1)
we can always augment vpx, tq by a constant, we can assume
βpsq “ βpsq :“ b0s

β0 for some β0 P p0, µq and for all s ą 0.
Indeed, for all px, tq P Rn ˆ rt,`8q

vpx, tq ě βp}x}q ě b0}x}
β0 ´ b0 ě b0}x}

β0 ´ 2b0

for any β0 P p0,mintµ, β0uq. This implies that pv, λ, α, δ, β, tq
satisfy a (SNE) condition with vpx, tq :“ vpx, tq`2b0, βpsq :“

b0s
β0 , where β0 P p0, µq, and δpsq :“ δpsq ` 2λb0, which

proves the claim.
Let h, a0 ą 0 be such that s

βps
1
µ q

ď pa0sq
1
h`1 for all @s ą 0,

for instance a0 :“ b
´ph`1q
0 and h :“ β0

µ´β0

. By considering
the modified function

rvpx, tq :“ pβ
´1
pvpx, tqqqµ
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and on account of the (PDI) condition on pv, λ, α, δq, for all
px,d, tq P Rn ˆD ˆ Rě we have

Brv

Bx
px, tqfpx,dtq `

Brv

Bt
px, tq ď µrv

µ´1
µ px, tq

dβ
´1

ds

ˇ

ˇ

ˇ

vpx,tq
ˆ

ˆ

´

´ λβprv
1
µ px, tqq ` αp}hpx,dtq}q ` δp}dt}q

¯

“ µ
´ s

βpsq

dβ

ds

ˇ

ˇ

ˇ

s“rv
1
µ px,tq

¯´1”

´ λrvpx, tq `
rvpx, tq

βprv
1
µ px, tqq

ˆ

ˆ

´

αp}hpx,dtq}q ` δp}dt}q
¯ı

ď ´
λµh

ph` 1qβ0

rvpx, tq

`
µp2a0q

1
h

β0λ
1
h

´

α
h`1
h p}hpx,dtq}q ` δ

h`1
h p}dt}q

¯

:“ ´rλrvpx, tq ` rαp}hpx,dtq}q ` rδp}dt}q (87)

where we used Young inequality and the inequality |x`y|p ď
2p´1||x|p` |y|p| for all x, y P R and p ě 1. Moreover, on ac-
count of the (ULB) condition on pv, β, tq, we obtain rvpx, tq “

pβ
´1
pvpx, tqqqµ ě pβ

´1
pβp}x}qqqµ “ }x}µ :“ rβp}x}q for

all px, tq P Rn ˆ rt,`8q. Therefore, prv, rλ, rα, rδ, rβ, tq, with
rβpsq “ sµ, satisfy a (SNE) condition which proves the claim.
Ÿ

B. Proof of (SP3)

By (P3) and given µ, ν ą 0, from any tuple pv, λ, α, δ, β, tq
satisfying a (SNE) condition we can find a new tuple
pνrv, rλ, νrα, νrδ, ν rβ, tq, with rβpsq “ sµ for all s ě 0, satisfying
a (SNE) condition. As it results from the proof of (P3), with

h :“ β0

µ´β0

, ψ :“ µp2a0q
1
h

β0λ
1
h

, β0 P p0, 1q and for some b0 ą 0

we have

rvpx, tq :“
´ 1

b0

¯

µ

β0 pvpx, tq ` 2b0q
µ

β0 ,

rαpsq :“ ψα
µ

β0 psq, rδpsq :“ ψδ
µ

β0 psq

Upon the (UUB) condition on pv, α, ζ, ξ, tq, it follows for all
t ě t

1

ψ
β0
µ

prαp}hpx, dq}qq
β0
µ “ αp}hpx, dq}q

ď ζvpx, tq ` ξp}d}q ď ζb0rv
β0
µ px, tq ` ξp}d}q

from which we obtain the new tuple pνrv, rλ, νrα, νrδ, ν rβ, rζ, rξ, tq
satisfying a (SSNE) condition with rζ ą 0 and rξ P K0 defined

as rζ :“ 2
µ

β0 ψζ
µ

β0 b
µ

β0
0 and rξpsq :“ 2

µ

β0 ψξ
µ

β0 psq. Ÿ

C. Proof of (44)

We prove the claim by transforming the tuple pΛ´1, γ, V, Zq
into a new tuple pΛ´1, rγ, rV , rZq satisfying a (HL)+(HD8)
condition with rγA and rγd satisfying (44) and (45), i.e.
rγApsq ě 1 and rγdpsq “ s´|γd,0| for all s ě 1. Clearly,
γApsq ě γAp1q for all s ě 1 and since γd P L1

8 there
exists γd,0 ă 0 such that γdpsq ď γdp1qs

´|γd,0| for all s ě 1.
Upon the form of the (HD8) condition, we can increase γd
and assume γdpsq ” γdp1qs

´|γd,0| for all s ě 1. Normalize
pγ, V, Zq as prγ, rV , rZq where rγA :“ γA

γAp1q
, rγd :“ γd

γdp1q
,

rΣA :“ γ2
Ap1qΣA, rΣd :“ γ2

Ap1qγ
2
dp1qΣd and rΞd :“ γ2

dp1qΞd.
The tuple pΛ´1, rγ, rV , rZq satisfy a (HL)+(HD8) condition with
rγA and rγd as desired. Ÿ

D. Proof of Theorem 6.1

We divide the proof in two steps. First, design a Lyapunov
function for the estimation error system, finally we carry out
the asymptotic convergence analysis.

1) A Lyapunov function for the error system: Let ∆e :“
e´pe be the estimation error and define a candidate Lyapunov
function for the estimation error system as follows

L p∆e, zq “ ∆eJPpzq∆e (88)

where Ppzq “ ΛJpzqΠΛpzq. In what follows, for simplicity,
we write zt instead of pvt ` pγ, Λt instead of Λppvt ` pγq and
set σppe,X,Λq :“ sated8 pΛpeq ` sat

xXd8
pΛ pXq. The estimation

error system can be recast as

9hkkikkj

∆et “ A∆et ` C
p1q
t ` C

p2q
t ` C

p3q
t

´ K pztqpC∆et ` O
p1q
t ` O

p2q
t ` O

p3q
t q (89)

with

C
p1q
t :“ F pΛ´1

t σp∆et `pet, pXt,Λtq, 0q

´ F pΛ´1
t σppet, pXt,Λtq, 0q

C
p2q
t :“ F p∆et `pet ` pXt,dtq

´ F pΛ´1
t σp∆et `pet, pXt,Λtq,dtq

O
p1q
t :“ H pΛ´1

t σp∆et `pet, pXt,Λtq, 0q

´ H pΛ´1
t σppet, pXt,Λtq, 0q,

O
p2q
t :“ H p∆et `pet ` pXt,dtq

´ H pΛ´1
t σp∆et `pet, pXt,Λtq,dtq

and

C
p3q
t :“ F pΛ´1

t σp∆et `pet, pXt,Λtq,dtq
´ F pΛ´1

t σp∆et `pet, pXt,Λtq, 0q

O
p3q
t :“ H pΛ´1

t σp∆et `pet, pXt,Λtq,dtq
´ H pΛ´1

t σp∆et `pet, pXt,Λtq, 0q.

Defining the homotopy Hompϑ, p1, p2q :“ ϑp1 ` p1 ´ ϑqp2,
ϑ P r0, 1s and p1, p2 P Rn, and

W
p1q
t :“sated8 pΛtp∆et `petqq`sat

xXd8
pΛt

pXtq,

W
p2q
t :“sated8 pΛtppetqq`sat

xXd8
pΛt

pXtq,∆Wt :“ W
p1q
t ´W

p2q
t ,

V
p1q
t :“Λtp∆et `petq, V

p2q
t :“ Λtpet,∆Vt :“ V

p1q
t ´ V

p2q
t ,

the functions C
p1q
t , O

p1q
t , C

p3q
t and O

p3q
t are easily decomposed

as follows, according to the mean value theorem,

C
p1q
t “

´

ż 1

0

BF pΛ´1
t x, 0q

Bx

ˇ

ˇ

ˇ

x“Hompϑ,W
p1q
t ,W

p2q
t q

dϑ
¯

∆Wt

O
p1q
t “

´

ż 1

0

BH pΛ´1
t x, 0q

Bx

ˇ

ˇ

ˇ

x“Hompϑ,W
p1q
t ,W

p2q
t q

dϑ
¯

∆Wt

∆Wt “

´

ż 1

0

Bsatcpwq

Bw

ˇ

ˇ

ˇ

w“Hompϑ,V
p1q
t ,V

p2q
t q

dϑ
¯

∆Vt, (90)
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C
p3q
t “

´

ż 1

0

BF pΛ´1
t W

p1q
t , dq

Bd

ˇ

ˇ

ˇ

d“Hompϑ,dt,0q
dϑ

¯

dt

O
p3q
t “

´

ż 1

0

BH pΛ´1
t W

p1q
t , dq

Bd

ˇ

ˇ

ˇ

d“Hompϑ,dt,0q
dϑ

¯

dt

and by virtue of (B8) for some t ě t0

C p2qptq “ 0, Op2qptq “ 0, @t ě t

(for simplicity set t “ t0). On account of the first two
inequalities in (HD8),

2∆eJt PpztqC
p1q
t ptq ď γApztq

ż 1

0

!

}ΠΛt∆et}2F´1
A pxq

`

`}Λt∆et}2ΣApxq
)

x“Hompϑ,W
p1q
t ,W

p2q
t q

dϑ

where we used supw }
Bsatc
Bw pwq} ď 1. Analogously,

2∆eJt PpztqC
p3q
t ptq ď γApztq

ż 1

0

!

}ΠΛt∆et}2F´1
d px,dq

`

γ2
dpztq}dt}

2
Σdpx,dq

)

px,dq“pW
p1q
t ,Hompϑ,dt,0qq

dϑ

Similarly, on account of the last two inequalities in (HD8),

2∆eJt PpztqK pztqO
p1q
t ď γApztq

ż 1

0

!

}Λt∆et}2ΞCpxq

`}R´1pcqCΛt∆et}2H´1
C pxq

)

x“Hompϑ,W
p1q
t ,W

p2q
t q

dϑ

and

2∆eJt PpztqK pztqO
p3q
t ď γApztq

ż 1

0

!

γ2
dpztq}dt}

2
Ξdpx,dq

`}R´1pcqCΛt∆et}2H´1
d px,dq

)

px,dq“pW
p1q
t ,Hompϑ,dt,0qq

dϑ.

By using (44), (SM) and the inequalities }W p1q
t }, }W

p2q
t } ă

nped8`
pXd8q, }Hompϑ,W

p1q
t ,W

p2q
t q} ă 2nped8`

pXd8q and
}Hompϑ,dt, 0q} ď d8 for all t ě 0 and ϑ P r0, 1s, we obtain
for t ě t0 and with c :“ ed8 `

pXd8

9hkkkkkikkkkkj

L p∆et, ztq ď γApztq
!

´λπL p∆et, ztq ` ρ2
8pc, d8qγ

2
dpztq

)

.

(91)

2) Error convergence analysis: We will now prove the
asymptotic bounds (58) and (60). First, since γA P K0 we
havelimtÑ`8

şt

0
γApzsqds “ `8, i.e. ϑptq :“

şt

0
γApzsqds is

a time scale. In what follows we use the overbars to denote any
variable in the new time scale. Let L ϑ denote L p∆eϑ, zϑq.
From (91) we get in the time scale ϑ

d

dϑ
L ϑ ď ´λπL ϑ ` ρ

2
8pc, d8qγ

2
dpzϑq (92)

for ϑ ě ϑ0 :“ ϑpt0q. Moreover,

d

dϑ
pvϑ “

1

γApzϑq

´

´ λpvϑ ` αp}hpxϑ,dϑqq} ` δpd8q
¯

(93)

and, on account of (31) and since vpxt, tq ď pvt ` pγ “ zt for
t ě t0 by (18),

αp}hpxϑ,dϑqq} ď ζzϑ ` ξpd8q (94)

for ϑ ě ϑ0. From (45) and (92) we get for ϑ ě ϑ0

d

dϑ
U ϑ ď ´qdU ϑ, U ϑ :“

L ϑ

γ2
dpzϑq

´
2ρ2
8pc, d8q

λπ
,

where qd :“ λπ ´ 4|γd,0|pζ ` ξpd8q ` δpd8qq ą 0 by (50). It
follows from the definition of L that for ϑ ě ϑ0

}Λpzϑq∆eϑ}2

γ2
dpzϑq

ă
2ρ2
8pc, d8q

λπλΠ
min

`
U ϑ0

` 1

λΠ
min

e´qdpϑ´ϑ0q. (95)

By applying lim supϑÑ`8 to both members of the above
inequality and going back to the original time scale, we get
the asymptotic bound (58).

Let’s prove the asymptotic bound (60) under the additional
condition (59). From (50) and (92) we get for ϑ ě ϑ0

d

dϑ
T ϑ ď ´λπT ϑ, T ϑ :“ L ϑ ´

2ρ2
8pc, d8qγ

2
dpzϑq

λπ
,

so that for ϑ ě ϑ0

L ϑ ă
2ρ2
8pc, d8qγ

2
dpzϑq

λπ
` pL ϑ0

` 1qe´λπpϑ´ϑ0q.

But, by the definition of L and 6 since λ
ΛpzϑqJΛpzϑq
min ě

z´2|λWmin|
ϑ for ϑ ě ϑ0, it follows that }∆eϑ}2 ă

L ϑz
2|λWmin|

ϑ

λΠ
min

for ϑ ě ϑ0. Moreover, on account of (44), (93) and (94)

zϑ ď epζ`ξpd8q`δpd8qqpϑ´ϑ0qzϑ0 (96)

for ϑ ě ϑ0. Since γ8 :“
b

supsě1 γ
2
dpsqs

2|λWmin| ă `8 by
(45) and (59), we finally get for ϑ ě ϑ0

}∆eϑ}2 ă
2ρ2
8pc, d8qγ

2
8

λπλΠ
min

`
z2|λWmin|
ϑ0

pL ϑ0
` 1q

λΠ
min

e´rdpϑ´ϑ0q

where rd :“ λπ ´ 2|λWmin|pζ ` ξpd8q ` δpd8qq ą 0 by (50).
By applying lim supϑÑ`8 to both members of the above
inequality and going back to the original time scale, we get
the asymptotic bound (60). Ÿ

E. Proof of Theorem 6.2

We claim that it is possible to transform the given tuple
pv, λ, α, δ, β, ζ, ξ, tq satisfying a (SSNE) condition into a new
tuple prv, rλ, rα, rδ, rβ, rζ, rξ, tq still satisfying (SSNE) and (68),
which in particular implies

lim sup
tÑ`8

}Λppvt ` pγqxt} ă c. (97)

On account of this, with the other assumptions of Theorem
6.2 and the N -filter and state norm estimate associated to the
tuple prv, rλ, rα, rδ, rβ, rζ, rξ, tq, the proof of Theorem 6.2 can be
continued from this point exactly as the proof of Theorem
6.1.

We prove our claim. Let ∆0 P p0, 1q. By (SP3) we
can transform the tuple pv, λ, α, δ, β, ζ, ξ, tq into a new
prv, rλ, rα, rδ, rβ, rζ, rξ, tq where rβ is given in (67). This implies

6Since W “ TJWDT with WD “ diagtλi P σpW q, i “ 1, . . . , nu
and for some orthonormal T and using standard properties of matrix
exponentials, for all s ě 1 it follows λ

ΛJpsqΛpsq
min “ λe

2 lnpsqWD
min “

λ
diagts2λi ,i“1,...,nu
min ě s´2|λWmin|.
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for each px0,dq P Rn ˆ D the existence of t0 ě t such that
rβ´1ppvt ` pγq ě rβ´1pvpxt, tqq ě }xt} for all t ě t0. On the
other hand, since7 }Λpsq} ď s´|λ

W
max| for all s ě 1, it follows

}Λpppvt`pγq∆qxt} ă c for all t ě t0 and ∆ P p∆0, 1s. Applying
the limsup to both parts of the last inequality, we get the claim.
Ÿ
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